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Abstract

Active shape and vibration control are means for obtaining
optimal flow conditions around wings, ducts and channels
under different conditions. This means that the structure can
be adapted (deformed or damped) such that aerodynamic or
vibro-acoustic behaviour is optimal for that particular
situation. The fast developments in computer technology
makes it possible that more complex analyses aerodynamics
and vibro-acoustics included are applied in the design
process. At NLR research is carried out on the integration of
advanced analysis tools in design environments. In this paper
the tools which are developed for the analysis of active shape
and vibration control are presented.

The backbone of the design environment is an optimisation
algorithm which helps the designer to come up with optimal
designs of structures. In the case of active shape and
vibration control the optimal design of controllers is a new
aspect. This means that in addition to the optimisation of the
locations of sensors and actuators the control parameters
have to be optimised. In this paper a method is proposed to
optimise locations and control parameters at once with the
standard finite element representation of the equations of
motion as a base.

1. Imntroduction

Active shape and vibration control are means for obtaining
optimal flow conditions around wings, ducts and channels
under different conditions. This means that the structure can
be adapted (deformed or damped) such that aerodynamic or
vibro-acoustic behaviour is optimal for that particular
situation. It is no common practice to analyse the effect of
active shape and vibration control in the design process due
to the complexity of the algorithms and the high computation
times. However, the fast developments in computer
technology makes it possible that more complex analyses can
be applied in the design process.

At NLR research is carried out on the integration of advanced
analysis tools in design environments. This started at the end
of the eighties with a multi-level optimisation tool for
preliminary design of aircraft structures (Ref. 1). Currently
this tool is extended to multi-disciplinary analyses and
optimisation (MDO) like aero-elasticity and vibro-acoustics
(Ref. 2, 3).

Recently a study has been started to incorporate the analyses
and optimisation of ‘active structures’ in the MDO
environment. The basis for this study is the knowledge and

developed analysis tools obtained from NLR research on
optimisation of damping treatments and piezoelectric
materials. This will be presented in the first part of this paper.
By implementing this knowledge in a MDO environment
NLR wants to make it available for the engineer in the
industry.

A new aspect which comes up with active shape adaptation
and active vibration damping is control. In the second part of
this paper attention is paid to the incorporation of control in
the equation of motion and the optimisation analysis.

2. Finite element formulation of
piezoelectric elements

To be able to simulate active damping, at NLR a finite
element method has been developed with which piezoelectric
material behaviour can be applied for all existing structural
finite elements. This is realised by creating piezoelectric
elements as so-called "overlay" elements.

The finite element representation of the equations of motion
for a piezoelectric element can be obtained by the assembly
of the structural part and the electrical part of the element
matrices as depicted in equation (1).

(Mo SJfE) e s -

oo

with: [M““] the structural element mass matrix
[Kuu] the structural element stiffness matrix
[Kgol the dielectric element matrix
* [Kyl the piezoelectric element couple matrix
{u} the mechanical nodal displacements
{¢} the electrical nodal potentials
{F} the mechanical nodal load

{G} the electrical nodal charge

The finite element representation of the equations of motion
for a structure consisting of piezoelectric material can be
obtained by the assembly of all the element matrices as
depicted in equation (1) to global system matrices. The
solution of this global set of equations yields the mechanical
displacements and electrical potentials in the structure with
piezoelectric material.

The two sets of linear equations from equation (1) are
coupled by the piezoelectric element matrix {Ky,)] and can be
split into two separate matrix equations with diminishing
piezoelectricity (piezoelectricity = 0 = [Kyy} = 0). These
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two separate (independent) sets of equations describe
respectively pure structural mechanics problems (first row of
Eq. (1) with [KyJ=0) and electrostatic field problems
(second row of Eq. (1) with [Kyu]=0).

The  matrices [M“u] and»'[K““] are the - standard - structural
element mass and stiffness matrices for a beam, shell or
volume element which are available in finite element
programs. This means that the element stiffness matrix of the
piezoelectric element can be assembled from an existing
element stiffness matrix and the general dielectric element
and piezoelectric element couple matrices of the overlay
element. In this way piezoelectric material behaviour can be
simulated in combination with all existing structural beam,
shell and volume elements and a general piezoelectric
overlay element.

The overlay element has been implemented in the modular
finite element program B2000. This is a modular finite
element package which is used by the NLR as ‘the
computational mechanics laboratory’, a development and test
environment for computational mechanics.

The piezoelectric overlay element has been tested and
verified with test cases from literature. One of these test cases
concerned the effect of piezoelectric material on the shape of
a structure. It concerns a cantilevered laminated composite
plate with on both the upper and lower surface a ceramic
piezoelectric layer (see Fig. 1). Thirty six four node shell
elements are used to model the plate. The composite plate is
made of T200/976 graphite-epoxy composites with a stacking
sequence of [-45/45-45/45]. Each layer has a thickness of
0.25 mm. The piezoelectric ceramic is PZT G1195N with a
thickness of 0.1 mm.

Figure 1 A laminated composite plate with piezoelectric
layers

The plate is exposed to three different load cases namely a
uniform distributed transverse load of 100 N/m?, a tip force
of 0.1137 N and a tip moment of 0.01448 Nm. The
deflections of the plate are calculated when a voltage of 0 V,
30 V and 50 V is applied over the upper piezoelectric layer
and an opposite voltage over the lower piezoelectric layer.
Figure 2 shows the calculated centreline deflection of the
composite plate under these different active input voltages. It
is observed that for 50 V the tip deflection is almost zero.
Further is shown that for 50 V combined with the tip moment
the deflection of the whole centreline is almost zero. So, with
a piezoelectric layer which covers the whole plate the
deformation due to a constant voltage corresponds with the
deformation caused by a tip moment, as expected from the
equations.

Figure 2 The centreline deflection under various loads
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3. Optimisation

In the case piezoelectric material has to be added to a
structure the mass of the structure will increase generally.
Especially for light weight structures this is a disadvantage
and therefore as less as possible piezoelectric material has to
be added. This means that the actuator and/or sensor material
to adapt the shape or vibration level has to be added at
optimal locations.

At NLR research has been carried out in which the optimal
locations of four tuned dampers on a vibrating rectangular
plate have been calculated such that the response of the plate
in a certain frequency range is minimal (Ref. 4). In principle
this algorithm can be used for the determination of the
optimal location of piezoelectric material, too. This has been
evaluated in a pilot study on an on all sides clamped plate
excited by a point force in the centre (see Fig. 3).

N\ rd z z rd i P rd
R RRRRKS

430

Figure3 Finite element mesh of an on four sides
clamped plate excited by a point force in the
centre

Initially the whole plate is covered with a piezoelectric

material layer of constant thickness. The objective of the

optimisation is to calculate the optimal thickness distribution
of the piezoelectric material layer such that the response in
the centre of the plate at the first eigenfrequency is 50 % of
the initial response and the first eigenfrequency does not
change. In figure 4 the final thickness distribution is
depicted. As expected, this shows that the piezoelectric

(actuator) material is concentrated around the location where

the response has to be reduced. The asymmetric thickness

distribution is probably caused by the coarse mesh and the
strategy followed in the optimisation process.
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Figure 4 Optimal thickness distribution for 50%
reduction of the response in the plate centre
(each patch corresponds with a finite element)

In the case the response at another location of the plate has to
be reduced the piezoelectric material is concentrated on that
location.

This preliminary study has proven that the optimisation
algorithms developed for the optimal positioning of tuned
dampers can be used for the optimal placement of
piezoelectric material, too. At NLR research is going on to
apply other optimisation objectives such as reduction of the
response of the whole plate in a certain frequency range or
reduction of the radiated sound intensity or to obtain a certain
shape of the geometry.

4. Coritrol

The basic ingredients for the analysis and design
environment for active shape and vibration control are
available in the analysis program B2000 namely static
deformation, dynamic and vibro-acoustic analysis tools,
optimisation algorithms, vibration reduction algorithms and
piezoelectric overlay elements. The objective of this study is
to combine these tools and to come up with a tool with which
the effect of active shape and vibration control on the
dynamic and acoustic behaviour of the structure can be
predicted and optimised.

To perform a coupled structural dynamic and control
optimisation in B2000 it is possible to incorporate the control
parameters in the equations of motion. For a structure with
actuators and sensors the finite element representation of
these equations is:

IMI{X } + [CH{ X } + [K}{x} = {F} - {Fc} | @)

with: [M] the mass matrix
[C] the damping matrix
[K] the stiffness matrix
{F} the applied force
{Fc} the applied force by the actuators
{x} the vector with nodal displacements and voltages
*  the derivative with respect to time

In the case of P(roportional)l(ntegrational)D(ifferential)
control of the velocity, the actuator force can be written as:

{Fc) = [Ril{x} + [Rel{ X } + [RpH{ X } 3)
with: [Ry] the matrix with parameters of the I(ntegrational)
part of the control
[Rp] the matrix with parameters of the P(roportional)
part of the control
[Rp] the matrix with parameters of the D(ifferential)
part of the control

Substitution of eq. 3 into eq. 2 gives:
(IMI+{RpD{ X JHICIHReD{ X IH(KI+RD{x}={F} (4

The values for the control parameters in the matrices [Ry],
[Rp] and [Rp] can now be obtained with the same
optimisation methods as used for the determination of the
optimal locations of actuators and sensors.

In structural dynamics the dynamic behaviour of the structure
is optimised by varying the structural properties such as
thickness, mass density or damping ratio. This means that the
components of the mass, damping and/or stiffness matrices
are changed. With the same optimisation procedure the
values for the control parameters in [R;], [Rp] and [Rp] can
be determined.

m, "_Fc_’ ms,
C’ L.'ul Cz l——uz

Figure 5 Two degrees of freedom mass, spring, dashpot
system with control force.

As an example the control parameters are determined for the
two degrees of freedom (DOF) system as depicted in figure 5.
The properties are summarised in table 1.

If full state feedback is applied with a PD controller, the
control force F; situated between mass 1 and mass 2 depends
on the displacements and the velocities and can be written as:

F, =1y fz}{zi} i "‘}{E;}

The values of the control parameters can be determined with
a special routine in MATLAB (the so-called pole placement
routine). This is carried out for the case that the goal is to
obtain a system with a certain value for the modal damping
with the assumption that the undamped eigenfrequencies are
equal to the damped ones. The results are depicted in the
second row of table 2. The values of the control parameters
obtained by optimisation of the standard equations of motion
with the control parameters as unknowns in the stiffness and
damping matrices are depicted in the second row of table 2.
This table shows that for both methods approximately the
same values for the control parameters are obtained.

At the moment research is going on to apply the optimisation
approach in B2000 to determine values for the control
parameters for more complex structures.
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Table 1 Properties of the two degrees of freedom (DOF)

system.
my =2kg mp =3kg
K =10 N/m ks =15 N/m
¢ - =05Ns/m ~lep.. - =0.1Ns/m
u(0) =0m u0 =0m
uy(0) =0ms ux0) =0mis

Table 2 Calculated values for the control parameters
obtained with pole placement method in
MATLAB and optimisation of the equation of
motions.

Parameter I Iy I3 I4

Values obtained with 0.66 0.00 |0.10 544

Pole placement

Values obtained with | 565 | 007 000 |542

optimisation

5. Conclusions

At NLR research is carried out on the integration of advanced
analysis tools in design environments. The fast development
in computer technology makes it possible to apply more
complex analyses in such a design environment. Therefore a
study has been started to incorporate in the design
environment knowledge and analysis tools in the field of
active shape and vibration control. In this way (theoretical)
knowledge gathered by a research institute like the NLR
comes available for the industry. The backbone of the design
environment is an optimisation algorithm which helps the
designer to come up with optimal designs of structures.

In the case of active shape and vibration control the optimal
design of controllers is a new aspect. To incorporate this in
the existing environment the control parameters have been
included in the stiffness, damping and stiffness matrices of
the finite element representation of the equations of motion.
Preliminary results show that this approach is promising.
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